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The Hermite-Gaussian representation of the generating function is used to examine the form of 
the transition probability for a multiphonon molecular radiationless relaxation process. 
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1. Introduction 

Radiationless intramolecular vibronic transitions have been investigated ex- 
tensively in the last few years [1-6]. Apart from their importance with respect to 
the problem Of the relaxation of an initially excited state, these analyses are of 
considerable importance in connexion with molecular reaction kinetics [7, 8]. 
In particular, for reactions which take place in dense media (which for the typical 
chemist constitutes the majority situation) often it is possible to formulate a rate 
constant generating function [7, 8]. Such generating functions have a considerable 
similarity to expressions derived for the molecular radiationless relaxation 
phenomena. One problem which arises in connexion with molecular relaxation 
processes, and may be exacerbated in the molecular reacting system, is the effect 
of sequence congestion and individual line broadening [-9-11]. Typically, this is 
treated by demonstrating, with one means or another, that the intrinsic lineshape 
is broadened, usually to a Lorentzian form. That individual Lorentz broadening 
may not be an important complication has been demonstrated recently by Nitzan 
and Jortner [12]. In general, multiphonon transitions associated with radiationless 
transitions exhibit Gaussian or at worst skewed Gaussian behaviour [-13]. More- 
over, even in the few-phonon limit the transition shape function probably exhibits 
a tendency to a Gaussian limit in the sense of the central limit theorem [-13]. This 
certainly is true for neutron scattering experiments with solids, liquids, and 
molecules [14-16], and one expects a similar situation to apply to the reactive 
system. 

In view of the above considerations, the purpose of this note is the examination 
of the form of the generating function for a molecular radiationless transition with 
the object of formulating a Gaussian limit for the many-phonon transition. 
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Interest focuses primarily on the low temperature limit for which the radiationless 
transitions take place by means of tunneling below the barrier defined by the 
avoided crossing rule. In addition, consideration of this problem is restricted to 
those systems in which the frequency shifts can be considered reasonably small (in 
the sense of Lin's theory [1]) or vanishing. 

2. Formulation of  the Problem 

The finite temperature transition probability for a radiationless transition is 

w=~-~ ~ exp(-flEi)Ki[H'lf)le6(Ei-E:)= F(O) (1) 
i , f  

where the transition shape factor F(O) in the Condon approximation is 

F(O) = [H'f [ZG(~if ) (2) 

and here 1t[: is the electronic matrix element of the driving perturbation, ei: is the 
energy gap separating the minima of the two vibronic states. We consider a two 
level representation of the electronic component of the system. Consequently, the 
matrix element 14': involves only those electronic basis vectors associated with the 
two states. The function G(e) is a normalized shape function which depends upon 
the energy gap, and is defined by the following time integral involving the generating 
function g( t ) : 

1 
G(e) =~h  j dt exp(iet/h) g(t) 

with g(t) given by 

g(t) = exp(~(~z/2){coth(hco.fl/Z)(cosog.t - 1) + 
\ n  

(3) 

i sin (o.t }) (4) 

and the sum over n is over normal modes with (. the normal coordinate shift. The 
generating function is presented for the case in which promoting modes are not 
involved. When promoting modes figure in the radiationless relaxation, the 
generating function modifies to [1] 

gp(t)=g(t)(~ (coth(he).fl/2)+ 1)e u~ +(coth(hco.fl/2)-1)e -i~ (5) 

Eqs.(4) and (5) assume no frequency shifts in the normal modes between the initial 
and final states. If there are non-vanishing, but nevertheless small, frequency 
shifts present, then according to Lin's analysis [1] a term 

fO f ) _ :,~(i) 
n ~n �89 coth(ho).fl/2), p . -  co~i ) (6) 

can be added to the gap contribution. 
In the following discussion attention is concentrated on the first case which is 

independent of promoting modes. It is a simple matter to convolute the promoting 
modes into the obtained result. 
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3. The Hermite-Gaussian Expansion 

The following analysis is a modification of Sj61ander's treatment [13] of the 
thermal neutron scattering cross-section in a Gaussian, multiphonon limit. 

Write the generating function as 

g(t) = exp {?(t) - 7(0)} (7) 

with 

7(0 = ~ (~2/2){coth(hco.#/2) cos co.t + i  sin co.t} (8) 
n 

and consider the following expansion 

g(t) = e- ,(o){ 1 + ?(t) + he( t )  + . . .  } (9) 

Next, consider the following function F(e) defined by the integral 

F(e) = ~ h  _ ~ dt exp(iat/h)(?( t)/7(O)) 

= 7-1(0) Z (~")/hco.){((n.) + 1)3(e + he)n) + (nn )6 (e -  hcon)} (10) 
n 

where E~ ") is the energy associated with the normal mode displacement in the final 
state with respect to the initial state (half the Stokes shift energy), 

E(n)_• r z (11) 
r - -  2 t ~ W n ~ n  

and 

(n , )  = (e "`~ 1)- 1 (12) 

An nth order term is defined as 

~n(e) = ~--~h ~ dt exp(iet/h)(?(t)/?(O)) n 
- o o  

= ~ d e 1 . . . & , - i F ( e - e 0 . . . F ( e , _ l )  (13) 

Furthermore, the functions Y(0 and ft,(e) both are normalized 

d~r(e)= 1 and ~ &%(0= 1 (14) 
-oo -o(3 

Therefore, the transition shape function assumes the form 

G(e) = e-r(~ i ?l(O) 
/ : 0  ~ l(/~) ( 1 5 )  

with 

fg o(e) = 6(e) (16) 

f# 1 (e) = F(0 (17) 

%(~)= ~ d~'r(~-~')%_l(e') (18) 
-oo 
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As long as the condition 

[7(t)l < 17(0) [ t r  (19) 

applies (which it will except for an Einstein solid), the following convergent 
expansion can be constructed 

?(t)/y(O)= ~ (c~`0/v!)(it)`0 (20) 
`0=0 

where 

0 ~ 0 = 1  0~1 =2  (conIc(O)) 0~ 2 =y--a(0) ~, (5,/2h)E~ ") coth(�89 etc. (21) 
n n 

In addition, the expansion of  the logarithm of the ratio 7(0/7(0) can be constructed 

ln{y(t)/y(O)} = ~ (x`0/v!)(it) ~ (22) 
v=O 

with 

/~1 -~ ~ 1 ,  ~co,~,y(0) coth(�89 ~ COne),,, etc. Z 1 2 
n, n' 

(23) 

Thus, the function ~,(e) can be expressed as r 

Finally, using the expansion 

c~")(it) ̀0 (25) exp n (~G/v!)(it) v =0 
-0=3 

where the c~ ) are easily identified, one finds 

N"(e)=2rchxfnAo-~o ~ dz v=oL C:)(iz)`oexp - � 8 9  

( ' )  2"/2 - 2 ~ o  n - h A ~ - ~ - n  0̀=oL c: ") exp Hv(x/Ao~/n) (26) 

where Hm(x ) is the ruth order Hermite polynomial, and 

x = e/h + n ~, 0,/7(0) (27) 
1 

The Hermite-Gauss expansion for the shape function reveals a skewed Gaussian 
shape for all transitions with n > 0. For n = 0 the series reduces to a delta function, 
As can be seen from the results, the degree of skewness depends on temperature, a 
result also anticipated by Lax [17] and by O'Rourke [18]. With respect to radia- 
tionless transitions the effect of skewness on the transition rate generally is expected 
to be small. The Gaussian character of the envelope about a particular n-quantum 
transition should determine the relaxation rate probably to within experimental 
error. As a consequence, it is possible to ignore skewness, and other higher order 
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corrections, and proceed to determine a general Gaussian form for a multiphonon 
transition centred about a particular value of n. 

We write 

with 

%(~) = 6(~)  + ~ -  ~,,(~) 
tl~O �9 n = l  

(28) 

1 exp( (e+nZ'hc~ 
ff,,(e) = hA o.~f~nn ~nE~ ~ ] (29) 

Thus, with the definitions 

E o --- hA o (30) 

and 

n•-n ~ hcoy~(O) 
l 

it is possible to express the shape function as 

G(~)=e- ' (~ F(x, z)+ Fcorr) 

with 

(31) 

(32) 

1 
fll = f2z/2E2 = ~ (,Szhoot) 2 (33) 

F(x, z)= ~ (z"/n!) 
exp ( -  x2/2n) 

. :  1 (2rm) 1/2 (34) 

z =7(0) exp(-�89 (35) 

The term Fcorr depends on the terms omitted in arriving at the above result. There- 
fore, F~orr depends on skewness, etc. The multiphonon transition probability is 
isolated as the expression 

G,(~) = exp( -  ~(0) - flax) F(x, z) 
Eo - -  (36) 

Values of F(x, z) have been tabulated [t3]. 
Finally, the effect of promoting modes can be incorporated into the above 

result by means of a convolution. The result is that the multiphonon transition 
centred about n is shifted to n-t- 1. The width of the transition Eo remains the same. 

4. Discussion 

In the expression for the Gaussian limit for the radiationless transition, Eq.(32), 
the quantities n and E o define the centre of gravity and width of the transition. The 
effect of these terms is illustrated in the Figure. In the zero temperature limit, 
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(a) 

/ 

Fig. 1. The figure illustrates the statistical limit for a many-phonon transition at finite temperature. 
The part of the figure labelled (a) represents the relative density of phonon states involved in the 

transition 

however, the transition width function E0 vanishes, and each Gaussian term passes 
to the delta function limit. As a result, the expression for the Gaussian representa- 
tion in the zero temperature limit contains the results previously derived in a 
number of places [5, 6]. The high temperature, multiphonon limit also is contained, 
it is 

( (~+(Er))afl~ (37) Gh,(g)=(Tz~/(Er)) 1/2 exp 4(Er) // 

with 

(E,)  = ~ E(, ~) (38) 
n 

If one returns to the expression for the generating function, Eq.(4), and makes 
the following expansion of the time argument 

the integration which leads to the shape function is trivial, and yields 

=( V 2 exp( N(e) \E, h~o,E~ ")coth(�89 22, (E(,"~h~ c-~(�89 (40) 

Generally, this is referred to as the strong coupling limit [3], and it is interesting 
to note that it corresponds to the semiclassical limit discussed by Lax [17]. Strong 
coupling in this case implies large magnitude coordinate shifts of the minima of 
the potential energy functions for the two vibronic states involved. Such situations, 
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i.e., large coordinate shifts, are encountered frequently in connexion with radia- 
tionless transition phenomena,  and in particular, in connexion with the solvent 
polar  modes in the electron transfer reaction. The validity of the semiclassical or 
strong coupling limit in the high temperature range for collective system modes is 
undisputed. However,  it would seem that considerable care must be taken with 
the application of  this limit to molecular degrees of  freedom whether in connexion 
with the relaxation of a molecular excited state or in connexion with the inner 
sphere degrees of  freedom with the electron transfer reaction. As the above 
Gaussian limit passes correctly to the zero temperature, quantum and to the high 
temperature,  classical limits, it seems a useful general representation, especially 
in cases of  questionable quantal or classical character. 

For  polyatomic molecules the situation approaches the solid state in certain 
ways. That  the inequality (19) is probably universally satisfied can be argued in a 
qualitative way. The molecular density of states becomes an almost uncountably 
large number  for moderate  excitations [20]. At this stage of the calculation the 
complete density of  states function is of  no use. However, it is possible to consider 
reduced density of  states functions for the individual normal modes (note, the 
summations involved in Eq.(11) are taken over the normal  modes, not over the 
quantum numbers within the modes). Anharmonieity,  and an'harmonic mixing 
of normal  modes results in an effective broadening of  each representative harmonic 
oscillator level in a band. Thus, associated with each normal mode must be an 
effective density of  states function which defines the number  of  states in the region 
of the harmonically defined normal  mode. These functions will be essentially 
continuous, and very likely nearly Gaussian. Consequently, near, but not exact, 
periodicity is guaranteed with the result that the inequality (19) is satisfied in 
general and specifically for each normal  mode of the system. For  molecules dis- 
solved in liquid or solid solutions the broadening of an individual line through 
coupling with the cont inuum of medium phonons will introduce density of  states 
functions for which a Debye cut-off must be applied to each normal mode. As a con- 
sequence, we see that not only is Eq.(19) satisfied, but in part  the effect of  sequence 
congestion can be transferred to the various quantities which enter the Gaussian 
representation of the shape function. 
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